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Abstract--This paper is devoted to the theoretical analysis of the growth of the thermal boundary layer 
and the heat-transfer problem in a steady, axially symmetrical slug flow of an incompressible, isotropic 
medium with constant physical properties, without internal heat sources assuming mixed boundary 
conditions. 

The exact solution of this problem is obtained by use of the Laplace transformation. 
The same problem is solved for comparative purposes, in an approximate way, by applying the principle 

of restricted variation. 
The computations of the temperature field are carried out for liquid sodium flow in the case of Biot’s 

number Bi = 0.5 and P&let’s number Pe = 22600 using the exact and the approximate solution. The 
numerical results obtained enable us to draw the conclusion that the principle of restricted variation can 

be applied in a case, in which an exact solution is not possible to find. 

NOMENCLATURE 

specific heat of the flowing medium; 
modified Bessel function of the tirst 
kind ; 

initial temperature of the flowing 
medium ; 

u, auxiliary function in equation (6), 
[Pe . (s . 0 - l)] ; 

restricted functional ; 
Bessel function of the first kind ; 
modified Bessel function of the second 
kind ; 

W, 

x, 

auxiliary notation in equation (6), 
(Pe.s); 

velocity vector of the flow ; 
distance in flow direction measured 
from the end of insulated section ; 
absolute length of the thermal entrance 
region, (5, . R) ; 

Z, 

dimensionless radius of the thermal 
boundary layer ; 
radius ; 

Bi, 

Pe, 

auxiliary notation in equation (6), 
(m. PI; 

Biot’s number, (R . a/A); 
PC&t’s number, (R . w/x). 

outer radius of the flowing medium; 
complex variable in the Laplace trans- 
formation ; Greek symbols 
temperature of the flowing medium ; IX, heat-transfer coefticient ; 
solidification temperature of the flow- specific weight of the flowing medium ; 
ing medium ; G2, Laplace operator ; 
ambient temperature ; V, Hamilton’s operator ; 
evaporation temperature of the ‘lowing IV,, restricted variation of the functional 
medium ; J* r, 
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dimensionless temperature parameter, 

T-T,. 
To-T,’ 
Laplace transform of 8, 9[e] ; 
approximate distribution of the dimen- 
sionless temperature parameter e for 
the first phase of the approximate 
solution process ; 
approximate distribution of the dimen- 
sionless temperature parameter e for 
the second phase of the approximate 
solution process ; 
thermal djffusivity of the flowing 
medium, (A/c . y) ; 
thermal conductivity of the flowjng 
medium ; 
dimensionless distance jn the direction 
of flow, measured from the end of 
insulated section (x/R); 
dimensionless length of the thermal 
entrance region ; 
dimensionless radius, (r/R). 

Subscripts 

a, ambient ; 

e, evaporation ; 

I, entrance region ; 
restricted ; 

:, 
solidification ; 
initial state ; 

1, 

order of the Bessel function ; 
first phase of the approximate solution 
process ; 

2, 

order of the Bessel function ; 
second phase of the approximate solu- 
tion process. 

1. INTRODUCTION 

THE PROBLEM of determining of the temperature 
field in a medium flowing through a duct (for 
example a pipe) is of great importance for many 
branches of industry, but it arises with particular 
sharpness in fast reactors. 

The complicated geometry of channels bet- 
ween fuel rods excludes beforehand the 

possibility of obtajning an exact solution deter- 
mining the temperature field in the coolant 
flowing between these rods. This circumstance 
leads to the application of approximate methods. 
In this work the principle of restricted variation 
[l, 21 is used, our aim being to compare the 
results obtained by use of this principle with 
the exact solution. The problem of determining 
&he temperature field in a steady axially sym- 
metrical slug flow with mixed type boundary 
conditions has been chosen as an example. This 
case differs essentially from those cited in the 
scientific literature. The solution of this problem 
is encountered most often either in plane 
geometry with Dirichlet’s boundary conditions 
[3,4] or in cyhndrical geometry with Neumann’s 
boundary conditions [5]. 

2. EXACT SOLUTION 

Our considerations concern the problem of 
determinjng the temperature field in an isotropic 
medium wjth constant physical properties, 
without jnternal heat sources, flowing with a 
constant velocity through an infinite thin-walled 
pipe. 

The wall of this pipe is insulated on part of its 
length and the temperature of the medium 
flowing through the insulated part is everywhere 
constant, whereas on the uninsulated part of the 
wall the boundary condition is of the mixed type. 

The thickness of the wall is so small, that jts 
thermal resistance can be neglected and its 
temperature can be assumed as equal to the 
temperature of the medium flowing in the 
vicinity of the wall. The system considered is 
illustrated in Fig. 1. 

The equation describjng the temperature 
distribution in the interval 0 < I < R and 
0 < x < + cc can be written in the vector form 
as follows : 

A.V’T - c.y.(wV)T = 0. (1) 

Taking into account the axial symmetry of 
the system and the slug flow of the medium as 
well as neglecting the conduction of heat in the 
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FIG. 1. Idealized model of the system under consideration. 

direction of x, we can write equation (1) in the makes it possible to write the equation (4) in 
form : the form : 

The boundary conditions for this equation 
as follows : 

T(r, 0) = To ; T(.r, + cc) = T. ; 

T, < To < T, ; T,<T,<T; 1 
aT 

ar ,=O = 

0; 

2. ~+u.(T-~J 1 ~0. 
r=R 

On expanding the term 

(2) 

d28 1 dB 

dp2+-*-- P dp 
Pe.(s.8- l)=O. (6) 

are The boundary conditions for above equation 
are : 

$l,_=o; [$+Bi.B]P;I =o. (7) 

(3) 
The introduction of an auxihaty function u and 
notations n12 and z defined in the nomenclature 
reduces the equation (6) to the form: 

(8) 

The general solution of (8) is: 

and passing to the dimensionless quantities, we U = c, . Z,(z) + c, . K,(z); (9) 
obtain for the equation (2): 

a28 
where C1 and C, are integration constants. 

i ae ae 
+p.ap-Pe.z=O; (4) 

On returning to the primary function 0 and 
apz finding the integration constants from the 

and, for the boundary conditions (3), 
boundary condjtjons (7), we obtain : 

8(P, 0) = 1; 
ae 
ig.+J = 0; ‘[$tiY0jk 1 = 0. } (5) ~~~,,.~~~~~~~~~~~~,,,.,,I. (10) 

The application of the Laplace transformation The inverse Laplace transformation of the 
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above expression yields (see Appendix) : 

where nu*beFs & are the roots of the foIIowjng 
transcendental equation : 

[, .J&,) - Bi .J,,(i,) = (s. (12) 

The relation (11) is the exact solution of the 
equation (4) with the boundary conditions (5). 

3, APPROXIMATE S0LUTION PROCES4I BASED ON 
THE RESTRICTED VARIATION PRINCIPLE 

The search for an approximate solution is 
based on the known idea ofthe thermal entrance 
region. The model of this idea for the case under 
consideration is described by Fig. 2. 

thermal entrance region &. In other words, the 
first phase concerns the interval 0 < < d 5,. 
whereas the second phase concerns the interval 
<,<C< l f*E. The division of ~~~s~deratjons 
into the two phases results from the fact, that 
the form of the function assumed as an approxi- 
mate solution for the thermal entrance region 
must be different from the form of the function 
assumed for the interval oraLsside this region. 

J,l The firsr phast? (0 < 5 6 5,) 
The starting relation is the equation (4) 

written in the self-adjoint form as follows : 

where x = ae/ay I 

In the present phase of the ~~~~~deratjons the 
above equation is treated in the intervat : 

o< 5 s T,r q(Sf G P G 1. (1141 

Our considerations will be divided into two The boundary conditions belonging to the 
phases. The first phase includes the thermal equation (13) are :: 
entrance region, in which the temperature 
penetration has not yet reached the axis of the 
flow. The distance from the origin of the and 

[$+ Bi.t?]pcz = 0; (15) 

~o~rd~nat~ to the place, where the temperature 
penetration has reached the axis of the flow, 
is defined as the dimensionless length of the 
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The restricted variation principle allows us to The thermal entrance region ends, where the 
write for equation (13) the restricted functional temperature penetration has reached the axis 
in the form: of the flow (q = 0; see Fig. 2). The expression 

J,(e) = 

The first 

6J, = - 

/J.(t);; Pe.X.e].p.dp 

(24) makes it possible to evaluate the dimension- 
less length 4,. This length is determined by the 
formula : 

+ .$ . Bi . t12 = Extremum. (17) &=;. ;.N1 +f.N,+N, 
i 

variation of the above functional is: + ln[[5---&)“. (firI}. (26) 

jj&.!$- p.Pe.X].dp.se 
3.2 The second phase (5, < 5 6 + cc) 

The fundamental relation is also the equation 
(4) in the form (13), which is now considered in 
thejnt erva 1: 

An approximate solution satisfying the 
5,<<< +a; O<p<l. (27) 

boundary conditions (15) and (16) can be written The boundary conditions are now: 

as follows : 

a . [1 - q(5)] 
e1 = l - 2 + Bi. [l - q(5)] 

+_sy. (lg) $i,_,=O: e(a.)=b (29) 

The only unknown quantity in (19) is the 
An approximate solution satisfying boundary 

parameter q(t). In further considerations the 
conditions (29) can be assumed now as follows: 

parameter q(c) is written, for brevity, as q, but it 8, = 4 + a,(5) + [a2(5) - ami . ~2. (30) 

is constantly understood as a function of <. 
According to (18) we have: 

The function 8, describes the temperature 
distribution at the end of the thermal entrance 

1 [$[p.?)- p.Pe.$!].dp.6e1 = 0. (20) 

region (5 = <,, q(t) = 0). This distribution is the 
initial distribution for the second phase of the 
considerations. Its expression can be obtained 

4 directly from the relation (19), by substituting 

Evaluation of the above integral, based on 9 = ‘. 
(19), yields an ordinary differential equation of Thus : 

the first order, determining the parameter q. 
This equation is of the form : 

w, 5,) = 1 - &. ~2. (31) 

Pe.(B,-B,.q+B,.q2--Bq.q3+Bs.q4+B6.qS-E,.q6+B8.q7-Bg,q8) dq 
10. (1 - q) . [2 + Bi. (1 - q)] ‘zj 

+(A,-A2.q+A3.q2-A4.q3+As.q4)=0; (21) 
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where 

A, = 5 + Bi; B, = 22 + Bi. (8 + Bi); 

A, = 4. (4 + Bi); B, = 2. [50 + 3.Bi.(7 + Bi)]; B, = 14. [2 + Bi .(3 + Bi)]; 

A, = 6. (3 + Bi); B, = 2. [85 + 7. Bi. (6 + Bi)] ; B, = 2. [5 + 7. Bi . (2 + Bi)] ; 

I 

(22) 

A, = 4. (2 + Bi) ; B, = 2. [60 + 7. Bi. (5 + Bi)] ; 

A, = 1 + Bi; B, = 10; 

The initial condition for equation (21) is : 

B, = 6 . Bi . (1 + Bi) ; 

B, = Bi2. 
J 

(23 do Jpo = 1. 

The particular solution of (21) satisfying the initial condition (23) is : 

5 = ;: $1 - 43) + ?.(l - 42) + N,.(l - q) 

+ In CL 

4 N4 I[ (2 + Bi) - Bi. q N5 1 >)l . 

(5 + Bi) - (1 + Bi) . q ’ 2 

where : 
Bi 

N,=-_+ 
1 +Bi’ 

4 
N2 = (l+; 

N 
3 

= Bi4 + 4. Bi3 + 7. Bi2 + 18. Bi - 2. 

Bi . (1 + Bi)3 7 

N 
4 

= 16.Bi3 + 13.Bi2 + 13.Bi + 144. 

(1 + Bi)4.(1 - Bi) ’ 

NS = 
- 4.Bi6 + 16.Bi5 + 57.Bi4 - 19.Bi3 + lOO.Bi’ + 32.Bi + 4 

Bi2 . (1 + Bi)4 . (1 - Bi) 

(24 

> (25) 

The parameters a,(<) and a2(<) in (30) should solution, as follows: 
satisfy the condition : 

a,(L) = a,(L) = 0. (32) 
8, = [l + al(r)]. 

( 
1 - $&P2 

> 
. (34) 

Making use of the boundary condition (28) we Similarly to the first phase we have the relation : 
obtain the relation : 

2 
a2(5) = a,(C) * - 2 + Bi’ 

(33) j [d!$!$) - pPe.$-j.dp.68, = 0. (35) 

0 

On substituting (31) and (33) in (30), we obtain On evaluating the above integral, we obtain a 
a new formulation of the assumed approximate differential equation determining the parameter 
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a,(<). This equation is as follows: The computations were carried out by use of 

da,+p a =_p. 
an ordinary desk computer on the basis of the 

dt ‘I ’ 
(36) expressions (11) and (12) as well as (19), (24), 

(26) and (40). The values of the roots of the 

where : equation (12) were taken from [6]. In the course 
of calculation process it was found, that it was 

P= 
6. Bi . (4 + Bi) 

(37) 
only in the case of t/t, = 0.17 (q = 0.7) necessary 

Pe . (12 + 6. Bi + Bi2)’ to use six terms of the series (11). For greater 

The general solution of the equation (36) has 
values of 5 four terms were enough, and further 

the form : 
even two terms of this series were sufficient, 
because further terms are very small as compared 

a,(t) = C.exp(-P.5) - 1; (38) with the initial ones. The dimensionless length 

where C is an integration constant to be deter- 
of the thermal entrance region for this example 

mined from the condition (32). After evaluation 
as computed by use of the relation (26) is 

of the integration constant we obtain the 
5, = 4972, which under conversion on the 

relation : 
dimensional quantity is 

a,(5)= -{1-exp[-p.(~--5,)1); (39) X, = <,.I7 = 4972.03 = 2486[m]. 

determining the sought-for parameter a,(<). The results of the computation have been 

Substitution of (39) into (34) gives the approxi- assembled in Tables l-4 and represented graphi- 

mate solution for the interval (27). This solution tally in Fig. 3. 

is of the form : The results obtained show that the greatest 
absolute difference between the exact solution 

8,= l_Bi 
( 2 + Bi’P2 > 

.exp F P.K - 5,)l. (40) 
and the approximate one is reached at the end of 
the thermal entrance region. This difference 

It satisfies the evident necessary condition : 
would probably be smaller, if it was calculated 

~,(P? ti) = 4(P, 5,). (41) Table 1. Distribution c~f the dimensionless temperature 
parameter 0 for #, = 0.17 (q = 0.7) 

4. NUMERICAL EXAMPLE AND DISCUSSION OF 
RESULTS 

Comparative calculations were made for 
liquid sodium, assuming for the physical quanti- 
ties involved, the following numerical values : 

0.9977 1.0000 O+KJ23 
0.9956 1 aJo ow44 
0.9989 1uJo0 wJ011 
0.9998 09923 ow75 
09947 0.9690 0.0257 
09641 0.9302 0.0339 

thermal conductivity of sodium .... 1 = 61.2 [kcal/m h . “Cl ; 

heat-transfer coefficient ............ CI = 61.2 [kcal/m2. h . “C] ; 

specific heat of sodium. ........... c = 0.3 [kcal/kg . “C] ; 

specific weight of sodium .......... y = 854 [kg/m31 ; 

flow velocity of sodium. .......... w = 3 [m/s] ; 

outerradiusofthepipe.. ......... R = 0.5 [ml; 
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thermal diffusivity of sodium ...... x = A/c. y = O-239 m2/h ; 

Biot’s number ................... Bi = R . a/L = 0.5; 

PC&t’s number .................. Pe = R . w/x = 22600. 

FIG. 3. Graphical representation of the results contained in 
Tables l-4. 

Table 2. Distribution of the dimensionless temperature Table 3. Distribution of the dimensionless temperature 
parameter 0 for&t,, = 0.65 (q = 03) parameter Cl for 5/t, = 1 (q’ = 0) 

P e ersct 0 appror. Lc, - &lrax. 

0 (1964 1~000 0.036 
0.15 0,961 1wo o+l39 
0.3 0,951 1.000 0.049 
0.4 0,939 0,997 0.058 
0.5 0,924 0,988 0,064 
0.6 0,904 0,973 0.069 
0.7 0~880 0,951 0~071 
0.8 W352 0.924 0.072 
0.9 0.8 19 0890 0~071 
1.0 0783 0851 0.068 

0 0911 1.000 0.089 
015 0.907 0.995 00x8 
0.3 0.895 0.982 0.0x7 
0.4 0.882 0.968 0.0X6 
0.5 OL865 0.950 0.085 
0.6 0.844 0.928 0084 
0.7 0,821 0.902 008 1 
08 0,793 0,872 0.079 
0.9 0.761 0838 0077 
1.0 0.730 0.800 0.070 
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Table 4. Distribution of the dimensionless temperature 
parameter 8 for kit, = 2 (q = 0) 

P e ex*ct e appror. e exact - eappror. 

0 0.754 0,823 0.069 
0.15 0,750 0,819 0.069 
0.3 0739 0,808 0.069 
0.4 0.728 0.796 0.068 
0.5 0.713 0,782 0.069 
0.6 0.695 0.764 0.069 
0.7 0.674 0.742 0068 
0.8 0.651 0.717 0.066 
0.9 0,625 0.689 0.064 
1.0 0.597 0.658 0.061 

using more terms of the exact solution (relations 
(11) and (12)). However, this would require 
time-absorbing (and expensive) computations 
by use of a digital computer. It seems not to be 
necessary to carry out such a work, our object 
being rather of a qualitative nature. 

An interesting fact to notice is, that the exact 
and the approximate solution are nearly parallel 
in particular for greater values of the variable 
< (Fig. 3). It should also be noticed, that the 
absolute difference between the two solutions 
obtained decreases with increasing 5, because 
the exact solution (11) and the approximate one 
(40) tend both to zero for 5 tending to infinity. 
The comparison of the exact and the approxi- 
mate solution in the thermal entrance region 
(bounded by the radius q(5)) confirms the 
validity of the interpretation of this region as a 
region where the temperature is constant (or 
nearly constant) and it varies outside this region 
only. The values of the temperature obtained 
for the thermal entrance region indicate much 
greater variability in the direction of p than in 
the direction of 4. 

It is also noteworthy, that the lengths of the 
thermal entrance region can be considerable. 
In the particular example computated here and 
concerning a pipe of 1 m dia. the temperature 
penetration has reached the axis of the flow 
only at the distance of 2486 m from the origin. 

The above confrontation of the interpretation 
used in the approximate solution process for the 

thermal entrance region with the exact solution 
can be treated as a basis for application of the 
restricted variation principle in cases, in which 
the exact solution is unknown. 
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APPENDIX 

Evaluation of the inverse Laplace transform for B (p, s) 
The Laplace transform under consideration is: 

B(p, s) = A 
Bi IJ,(,/(Pe s) p) 1 J(Pe.s).l,[,/(Pe.s)l + Bi.l,(J(Pe.s)) (*“) 
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The inverse Laplace transform of (A.l) can be written as 

follows : 

B(P, 5) = .9- 1 f&P, s)l 

=l-~p-’ A, 
[ 

Bi ! ,[J(Pe s) p] 
s II J(Pe s) I ,[&Pe s)] + Bi I,[J(Pe s) 

P(s) =1-y-’ - ; L 1 s Q(s) 
(A.3 

where 

P(s) = Bi I,(d(Pe s) p) ; (A.3) 

Q(s) = J(Pe s) I,[,/(Pe $1 + Bi Z,[,/(Pe s)]. (A.4) 

For the last term of (A.2) there exists the known relation 

PI : 

dip-’ 
P(st L-1 PO 

s. Q(s) = Q(o) 
a 

+ c J%J 
[s. dQidsl,=,< 

exp (s, .5) ; (A.3 
n= 1 

in which the quantities s, are the roots of the expression 

(A.4). 
According to (A.3) and (A.4) we have: 

P(s) IrzO = Bi; Q(&, = Bi. (A.6) 

Substituting (A.6) in (A.5) and then in (A.2) we obtain : 

m 

B(P, 5) = - c P(S”) 
[s dQidsl,=,n 

exp (s, 5). (A.7) 

“=I 

Using the auxiliary notation for (Pe s). we can write the 
relation (A.4) in the form: 

Q(s) = hr. I,(m) + Bi I,(m): (A.8) 

and, making use of the properties of Bessel functions [9], 

transform it as follows: 

Q(s) = F.J,(i.m) + Bi.J,(i.m); 

where:1 = V1-l. 

(A.9) 

On Introducing the notation : 

i.m = i: (A.10) 

we can write (A.9) in the form: 

Q(s) = Bi .Jdi) - i. JI(i) = Q(i). (A.11) 

Making use of (A.10) in the auxiliary notation for (Pe. s) 

we obtain : 
f? 

s=-pe 

From (A.11) it follows, that there is an infinite number of 

roots s, = - [i/Pe. satisfying the condition : 

i, J,(L) - Bi J,(L) = 0. (A.13) 

The first six roots of the above equation were found in [6]. 

The denominator of the relation (A.7) can be evaluated 

as follows : 

+ Bi I,(J(Pe s)) 

II 

= 
S=S” 

= f [(Pe s). &/(Pe. s)) + Bi J(pe s). I,(,/(Pe~ ~))l,=~, 

= f. [rd. I,(m) + Bi.m. ~l(m)]s=s, 

= 4 [m2.JO(i .m) - Bi.i.m .J1(i.m)],=,_ 

= f [ - i2 .J,,([) - Bi. i .J,(i&,n 

= - f. [ii .Jo([.) + Bi. 1,.51((n)]. (A.14) 

According to (A.13) we have: 

i. Jl(i.) = Bi J&I.). (A.15) 

Therefore 

dQ 

[ 1 S.- 
ds S=bn = 

- f Pi* + i.‘). Jo(i,). (A.16) 

The expression (A.3) can also be transformed in the same 

manner: 

P(s) = Bi. I,[J(Pe. s). p] = Bi. Z,(m. p) 
= Bi.J,(i.m.p) = Bi.JO([.p). (A.17) 

Therefore 

P(s.) = Bi .Jo(c,. p). (A.18) 

Substituting (A.18) and (A.16) into (A.7) we obtain the 

inverse transform in the form : 
m 

f?(p, 5) = 2. Bi. 
c 

Joti.. P) 
(Bi’ + [,f) .Jo(i.? exp 

- ge.< (A.19) 

“-1 
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RECHERCHE THEORIQUE SUR LA R&ION D'ENTRkETHERMIQUE POUR UN 
BCOULEMENT STATI~NNAIRE A SYM~TRIE AXIALE AVEC DES CONDITIONS 

AUX LIMITES MIXTES 

R&nrC-Le but du present travail est celui de resoudre, d’une methode approximatique, le probleme 
de la couche-limite thermique et du champ des temperatures dans un tcoulement stationnaire a symmetrie 
axiale et a vitesse uniforme (rod-like flow) d’un liquide incompressible. Les quantites caracterisant les 
proprietes du milieu sont trait& comme constantes. En outre ou admet que la chaleur ne peut pas &tre 
produite dans le milieu. Ce problemme est resolu d’une man&e exacte- au moyen de la transformation de 
Laplace. Pour comparaison, il est resolu Cgalement au moyen de la mtthode de variation restreinte. 
Pour illustrer ces considerations ou donne un exemple numerique, dans lesquel la valeur du nombre de 
Biot est Bi = 0.5 et celle de PeclCtPe = 22600. Les resultats obtenus permettens de conclure que la mtthode 

de la variation restreinte est applicable a ceux pour lesquels la solution exacte n’est pas connue. 

THEORETI~CHE UNTER~UCHUNG OBER DEN THERMISCHEN EINLAUFBEREICH 
BE1 STATIONilRER ACHSIAL SYMMETRISCHER KOLBENSTROMUNG MIT 

GEMISCHTEN RANDBEDINGUNGEN 

Zusammenfassung-Die vorliegende Arbeit beschaftigt sich mit der angenlherten Losung der thermischen 
Grenzschicht sowie mit dem Temperaturfeld in der axialsymmetrischen, station&n Kolbenstriimung 
einer inkompressiblen Fliissigkeit Die physikalischen Eigenschaften des Mediums werden als Konstant 
angenommen. Hinzu kommt no&, daas im Medium selbst die innere Wlrme nicht entwickelt werden kann. 
Es wurde such eine exakte Lijsung dieses Problems mit Hilfe der Laplace schen Transformation gefunden. 
Des Vergleichszwecks wegen wurde dasselbe Problem mit der Methode der begrenzten Variation 
nlherungsweise gel&t Zur Erlluterung der Theorie wird ein Beispiel ftir Biot’sche Zahl Bi = 05 und 
ftir Pecltt’sche Zahl Pe = 22600 berechnet Die gewonnenen Ergebnisse ermijglichen den Schluss tiber 
die Anwendbarkeit der Methode der begrenzten Variation fiir den Fall, in dem keine exakte Liisung 

gefunden sein kann, zu ziehen. 

TEOPETINECKOE MCCJIEfiOBAHBE BXOAHOFO Y’IACTHA 
CTAIIIIOHAPHOI’O OCECIIMMETPBYHOFO CTEPXHEBOI’O TE=IEHI/IFl 

IIPB CMEIIIAHHbIX I’PAHLlYHbIX YCJIOBIIflX 

AliaoTaqw?-B pa6oTe II~OBOA~ITCR TeOpeTWieCKHfi aHaJIkI3 pocTa TenJIOBOrO norpaimrnoro 
CJIOf4 II TenJIOO6MeHa B CTaqHOHapHOM OCeCBMMeTpRYHOM CTepmHeBOM TeqeHIIll HeCiKII- 

MaeMOt NlfiKOCTM C nOCTOHHHMMB @R3WIeCKHMM CBOi%CTBaMli npM OTCyTCTBIiH BHyTpeHHIlX 

HCTOYHI~KOB Tenna c rpaHwxHbIhw ~CJI~BHRMR TpeTbero pona. nonyseK0 TogHoe peurewe 

3aAawi c noMo~bI0 npeo6pa30BaH~1 JIannaca. @H cpaBHewu4 npoBeAeH0 npnonwKeHHoe 

peIUeHkle 3TOff 3aAaYll C IICnOJIb30BaHEIeM BapllaqHOHHbIX MeTOAOB. PaCCWlTaHO TeMnepaTy- 

pHOe nOJIe B nOTOKe HaTpllR AJIll CJIyqaH KpHTepWI BElO Bi= 0,5 II KpMTepLlFI neKJIe &? = 

22600. AJIH paWeTa PlCnOJIb30BaJILlCb TO'IHOe M npHOJIHlKeHHOe peIUeHIIR. nOJIyqeHHbIe 

pe3yJIbTaTU nO3BOJIkIJUlCAeJIaTbBbIBOAO BOBMOlKHOCTkl npllMeHeH&lE BapHaqIiOHHbIX MeTOAOB 

AJIl? CJIy=laeB, B KOTOphlX HeB03MOHiHO HafiTll TOYHOe peIIWHPIe. 


